Case Study - Acrobat Assistant
Worked on fine tuning language models for document intelligence lab
- Client
- Adobe
- Year
- Service
- Fine Tuning Models

Overview
Adobe Atlas is revolutionizing the research landscape by giving scholars the tools to dynamically design studies around PDF content. Using Python scripting, researchers can produce adaptable JSON study designs and then instantly pair them with PDFs for a seamless study formulation process. When these PDFs are uploaded to the Atlas site, they're transformed into engaging, survey-like studies designed for user interaction. This interface captures user insights, with studies yielding actionable data output in JSON format.
Post data collection, the platform excels in extracting valuable text and imagery from user selections, streamlining data preparation for ML models. Furthermore, the gathered data is harnessed to refine a proprietary language model, leading to the creation of "Acrobat Assistant", a next-generation tool whose details are eagerly awaited for public release.
What we did
- full-stack development
- model intergration
- natural language processing
Adobe Atlas revolutionizes the research landscape by empowering scholars with the tools to dynamically design studies centered around PDF content.

Research Scientist at Adobe